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On the Existence of Thermodynamics for the
Generalized Random Energy Model
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Derrida’s generalized random energy model is considered. Almost sure and L7
convergence of the free energy at any inverse temperature § are proven for an
arbitrary number » of hierarchical levels. The explicit form of the free energy is
given in the most general case and the limit » — oo is discussed.
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1. INTRODUCTION

Random energy models were introduced by Derrida'’’ as simple and

solvable models for spin glasses. Spin glasses are disordered magnetic
systems and, as is well known, a mean field description of such system is
given by the Sherrington—Kirkpatrick model.* This model is defined on a
one-dimensional lattice for Ising spin ¢ = +1 by the Hamiltonian

H(e)= - J,0,0,
(i.h)

where the J; are independent Gaussian random variables with zero mean
and variance l/ﬁ. The quantity H(s), the energy associated with a given
configuration o, is a Gaussian random variable with

E(H)=0, E[H(s)]*)=N, [E(H(G)H(G'))=%(Z f&d[)

i=1
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No rigorous results exist for this model, but the random energy model can
be rigorously solved.®)

The GREM @ is the most recent model and it describe a system with
2" possible configurations where the Hamiltonian is not specified, but the
energy associated with each configuration is the sum of Gaussian random
variables and the correlations between different configurations are
described by a covariance function that depends on n—~ 1 parameters.

With a suitable choice of the above-mentioned parameters, it is
possible to reproduce, in the limit n — co, many features that are typical of
“Hamiltonian” spin-glass models.®*’ In Ref. 2 a method for evaluating the
infinite-volume limit of the average free energy for arbitrary » is described
and some examples of explicit solutions are exhibited.

In this paper we show that the sequence of random variables

1 2N

I
FN(ﬂ):X]ln ZN:Nm Z exp fie,

v=1

converges almost surely to its average value F(f) and in all L, 1< p< o0,
and we give the explicit form of F(ff) in the most general case. We prove
also that it is sufficient to have n/N =o[(In N)' *"] to get the same results
when the joint limit N —» o0 and #n — oo is considered.

In Section 2 we define the model and state our theorem. The proofs
are given in Section 3.

The strategy is similar to that used in Ref. 5 for n= 1. In that case the
main ingredient of the proof was that for large N the maximum of the
sequence of independant Gaussian random variables E,/N,.., E,x/N is
almost surely bounded. In our case each energy is the sum of # independent
Gaussian random variables and we show that there exists a compact, con-
vex region @ in R” where typically the 2" points associated with the
sequence E,..., E,n lie (cf. Proposition 3.1).

We also prove a strong law of large numbers for the occupation num-
ber of the neighborhood of an arbitrary point in Q (cf. Proposition 3.4). By
the use of suitable lower and upper bounds we show that almost surely

1
lim Fy(B)=F(f)= lim <In[E(Zyi})]

N— oo N -

where [ is the average with respect to the Gaussian random variables and
Xy is the characteristic function of the set E, €0, vve {1,.,2"}. The
asymptotic behavior of E(Z,yg) is obtained by very simple geometrical
considerations. The L” convergence follows from the mean convergence
theorem by proving the uniform integrability of the random variables

EN(BI”.
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2. DEFINITIONS AND RESULTS

For any ne N and any NeN let ¢,=>0 and o, > 1, i=1,.., n, be real,
positive numbers such that

Y oa=1, Y Ino,=In2

i=1 i=1
and let (€, 2, P) be a probability space such that for any ne N and Ne N

there exists a family of of +afa) + -+ +af - oY independent, nor-
malized, Gaussian random variables

eih"__k]ev/i/(o, 1), j=1l.,n k= 1,...,01]’.\’

defined on (2, 2, P).
The GREM at inverse temperature f§ is then defined by the family of
random variables

N

ZonB)= 3 - 3 exp /ﬂv”(}": s) 2.1)

k=1 k=1 j=1

Define also, for any ke {1,.., n}, the following subset of R*:

; .
&(k):{(x,.), =1, k|Vel,k ¥ X2<2 i In oc,} (2.2)

i=1 i=1

and ||x|?=3"_, X? is the Euclidean norm of R”". Our main result is:

i=1
Theorem 2.1. Let m* be the n-dimensional vector, m*=

(mF)r_,=(Pal?y!_,, and let m be the point of the compact, convex subset
&(n) of R™ at minimal distance from m*. Then for any >0

.1 lm*|? m—m*|?
= lim — = _
Ey NLth’Z"*N(B) 2 2

+in2 (2.3)

almost surely and in L7(Q, X, P) for any 1< p < co. If we consider the joint
limit N — oo and n— oo, the same result holds if n < const x N/(In N)' *7
with #' > 0.

3. PROOF OF THEOREM 2.1

The proof of Theorem 2.1 follows from Propositions 3.3 and 3.5 and
inequalities (3.6) and (3.7). We study first the almost sure convergence.

Let us first consider the case where 7 is fixed. We start with an upper
bound for the free energy.
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Given a family 8 = (64,..., §,,) of strictly positive numbers and je 1,..., n,
let

i
Q=3 Ino,+4,
i=1
and

j
A(j, Ny = {wteVkl,..., ky, Y, (&,

i=1

< 2Q;~N}

Let us define x(Q;, N) =1 4, ») as the characteristic function of the set
A(j, N).

Proposition 3.1. For any &= (J,,..,9,)eR", 6,>0, Vi=1,.,n,
there exists 2, = Q2 such that P(Q,)=1 and for any w e Q,, AN,(w, 8) such
that, for any N = N {0, 0),

Proof. Since

P(11 oM =0)=% () atim)< T puatin)

j=1

and

P(A(j,n)) =P (Max i (Ely,. ) = 2Q1N>

Ky i1

gg—iQiNa’lv---o;jV(l—l)_J/2> YOo<id<li

where we have used the exponential Chebyshev inequality and the fact that

A J ) AJ )
E(expiMax 3 () <al -~-a,NtE(exp— » (s’)Z)
2 ki (T4 2.5

=(al a1 —A) 7
Choosing 2=1—y, with
5.

: J
"= 0206, + 30 2inay)

we get

P(A°(, N)) < (1)~ "Pexp(=6;N/2),  Vjel..n
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Therefore

Z Xn: P(4°(j, N)) < +cc

and the result follows from the Borel-Cantelli lemma.

Proposition 3.2. The exists 2, < such that P(Q2,)=1 and for
any we 2, and any y >0, IN,(w, y) such that if N> N,(w, y), then

\ 1 n
Z, (B) < [exp(yN)] ((2 )1/2) f sy e

24 -e2<20,N

xexp[i (Nln oc,-—%)q%ﬁi (Na,-)‘/zs,] (3.1)

Proof. By the Markov inequality
P41 10, 0 2, > (11 1@, Zynlh) )} e
=1 j=1

The result follows from Proposition 3.1 and the Borel-Cantelli lemma.
Let us define

5’(1(,6):{(3’,-),i——-l,...,kth:l,., iX2<2Q} k=1,.,n

Proposition 3.3. Let m*(f) be as in Theorem 2.1 and let m(J) be
the point of the compact, convex subset &(k, §) of R” at minimal distance
from m*. Then for any # >0 and for any w belonging to Q, the following
inequality holds:

InZ, (B)<SNIF,(B)+n+7]
=N Im* |2 = 4im—m*| +logn+n+7]

if 6=3%7_,0, is small enough and N> N,(w), where 7 is defined in
Proposition 3.2.

Proof. Let us first remark that, since &(n, §) is convex, then, if
8—(8) ——leg(n, )s

~NmEP Y (= N6+ S, NIm5) - mr T (32)

1 i=1 i=1

el
—

822/46/3-4-5
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Since (3.1) also can be written as

1 n
ZH,N([)’)SZN[exp(yN)] <(2 )1/2> ng(n,é) <’\’/—8_‘N>
xexp[i ~%(Ei—\/—ﬁmz‘*)2+Nn§i* }delmdsn

=1

then from inequality (3.2) one gets

14

21
Z,MB) <2V exp(rN) exp— 3. 5 [/Nm(9) = /Nm P+ N 3

i=1

m*2

and the result follows from the continuity properties of m,(8) as a function
of 8 together with Proposition 3.2.

To prove a lower bound for the free energy, we start with the follow-
ing result:

Proposition 3.4. Let 4=(4,,..,4,) be a subset of R” such that
for any j=1,..,n

[T 2] E0,(6) > 59

where J(N) are such that 3. 27_, [fj(N)]’1 < o0, then for any given
0<n <1 there exist Q< @ with P(2;)=1 and for any we 25, IN;{w, )
such that YN > N;(w, n)

N 'V

X %y n .

Z Z ﬂdz(gklkz 2 1,080 )=z (1—n) n V(T ("))
kn=1

ki=1 ky=1 i=1

Proof. Let us remark that

P(Zﬂa,"'zué(l—m H a,’-V[E(ﬂA,))
ki kp i=1

<[P><
3}

Al...anﬂA"_E(Eﬂdl...%“%
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and

"Eqkzlﬂ‘“m%ﬂ"”_E<kz.ﬂ""”kznﬂ"">]z)

n—1

=2 X X Y E(lL) - E(1L)
j=1 kl"'k/ k/+1¢1/+1 /[(]TZ"k[n
j4+2" " in

) [1—E(1,) E(1)IE(,, ) E(1,)]?
<[l—[ “?’[E(ﬂd,)} "il o7 E(Vy, ) B,

i=1

where we have used the independence of the ¢’s.
It follows from the Chebyshev inequality that the left-hand side of
(3.3) does not exceed

1 n 1 1 n
=Y ———— <~ Y [HN
2] IHI—ICXN[E( 2 ‘i: J

and the result follows from the Borel-Cantelli lemma.

Proposition 3.5. Vp>0, Y1 >#>0 there exists Q, < such that
P(Q4)=1 and Yo e Q,, IN,(w, ) such that for any N = Ny w, )

Z,x(B)Z (1 —n)exp N[F(f)—p] (34)

Proof. Let us remark first that YA=(4,,..,4,)cR"

N

Zn,N(ﬂ) 2 ﬂm\gkl Z 1]/1 e%, k)

k=1 kn=1

xexp[)’ﬁ Inf Z\/(Zsi (3.5)
eled; =1
u=1—-n

Then choose
Alp)={eeR"|/NLm,~2p, ] <e,</N[m,~p], Vi=1~n}

where (m,)7_, =m is defined in Theorem 2.1 and the {p,}7_, are such'that
A(p) < &(n). Since

IE(,[] (81))> expg—%N(mI_zpl)z
45 =
N(mi"Pi)(zn)I/z
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we get

/ 1 Jexp X./_; 2N(p,m; — p})
NE(T,)< — S
il;ll #Ela) (2(27TN)1/2> [T (m;—p,)

ie., the hypotheses of Proposition 3.4 are satisfied. Then, using Eq. (3.5)
and proposition (3.4), we get

n

1 G
ZosB> (1 -mep N S [ a3 =200 45 3 ol 20|}

i=1 i=1
—(-mep N[ F®-p2 % ap 42T pte2 3 oim |
i=1 i=1 i=1
from which we get the result.
Remark. To study the joint limit N — co and n— o0, we have to
show that in this limit all the previous probability estimates hold and that
error estimates on the free energy can still be made as small as we please.

The error on the upper bound for the free energy is proportional to
n 0

i=1Yi

The error on the lower bound for the free energy is

26 3 ai?p,—2 > pi—2 Y i,

i=1 I=1 i=1

In order to prove the analogue of Proposition 3.1, it is sufficient to show
that

n

Y ¥ () exp(—d,Nj4)y< 0 (3.6)
To satisfy the hypotheses of Proposition 3.4, it is sufficient that
n ) J J
53 eI -safer| - 3 2m o <
Nzl j=1 i=1 i=1
(3.7)

It is easy to check that if we choose

_ o
77 j(In, )t

p1=p, p,:p/\/ﬁ for i=2,..,n, n=20,/(41n2)

) forsome # >0
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and we assume #n < const x N/(In N)' *7" for some #” >0, then the above-
mentioned errors on the free energy can be made as small as we please for
p and ¢ suitable and the two sums (3.6) and (3.7) are convergent.

3.1. Convergence in L7(Q, 2, P), Vpe[1wo[

In order to prove [* convergence, we use the mean convergence
criterion'®): if the random variables {| yy|?, N> 1} are uniformly integrable
(u.i.), that is,

lim sup j |ynl? dP=0

x>0 N> Ny Ulynll za
and y, — y in probability, then u, — y in L7

Since

ki yenkn i1

FB) <N Max (3 07, +1n2
J

Fu(B)= BN MaX(Z a;ef, k>

if @>1 we get, calling

¢= Max(Z a’ef, kj)
..... o

that

| EupIrar

[ENIP > 2

pe
<
J\ﬂé/\/ﬁ‘f’ln2>11/’p (\/N+l 2) dD:D
_ B Y
+jﬂ§/\/ﬁ< _alip ( \/ﬁf) dpP

< i [(I+1)a?+1n2]7 P <5>

L/N(a'? —In 2)>
B

§ I+ 1) op <¢<—“1;’f)
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since ¢ is the maximum over 2" random variables, we have that

p (>SN v (§ s NN )

J=1
PN
<2Vexp Tz (¢'”? —1n 2)?

if «7—1n2>1, where the last inequality follows from the fact that
", a?ele #(0,1).
Furthermore, it is not difficult to convince oneself that

1p n ip
p(§< _\/_Lﬁ‘,a_><21v|p<2 aei < _M)

i b
NPPo??
<2%exp T

Thus, when 7 >1n 2 + 28(In 2)*?, we get

oG

sup | [Fyl?7dP< )y [(I+1Da'”+In27”
V>1‘J|I'NU’><1 =1
P’ —In?) & P(s?")
xexp—-—-Tﬁ———— Z: (+1) ”ocexp—»—z—ﬁz—

which goes to zeroc when o goes to infinity.

3.2. Explicit Evaluation of the Free Energy

At the end of this section we will give the explicit formula for the free
energy for arbitrary sequences (In o;)7_, and (a;)7_, with >7_,Ina;=In2
and Y7_, a;= 1. The problem is just to explicitly evaluate the coordinates
of the point m in Theorem 2.1.

Let us first define, if j and k are two integers smaller than n, with j <k,

a;, B

Js

[\/]»

>0

k—ZZlna/

i=j i

H

J

Let us also define the following integers: J§ =1,

Jr=Inf{J>1|B?,<B2, ,, Vi=J+1}

JE=Inf{J>Jt |B} ,<B,,, VI=J+1)}
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and let 8, >0 be such that
Bi=Bl

From the very definition of J¥ it follows that f, is an increasing sequence
of real numbers. For f, <f<B,,, we will prove that the point m in R"
with coordinates

= B,a? if je[J¥ +1,.,J%], lel.. k
w=pa, i i€ [JE+ Ly n]

is the point m of the compact subset &(m) at minimal distance from
m* = (Ba}’?)i_,

Starting from the vectorial identity in R”
(e—m*)P —(e—m)— (m—m*) = =2 —m) (m* —m)

if we can prove that for any ¢ e &(n)

then m=m if Be [, frs1]-
Since my,=m}, VizJF+1,

~

*
k

= Z m¥ — ;)
k J
= Z < > Z (g;—m,)m,
{= i=Jl
Let us remark that if
eeé(J ﬂ S(Jj)
Jj=1
where
(| J
218/2 <y lnoz,}
i=1 i=1
then
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since g(¢) =0 is the equation of the tangent hyperplane at # to S(/). Using

i
Z (g;~m)m; = 8= 8,
I
with
= 0
we get

Lle)= }Ii (-g[— 1> (gp—8s)

Ny
—gnpt /),(gJ, gj,{])
I=1F!

(e 5 o) oo

where we have used §,<f,,, and g,(e)<0, VJe .., JF if e &(JF). Thus

i

1
Zlm*|?—= — ¥ ?
F(p)= 2 I ZHm m*||*+1In 2

—ﬁ’2+ln2 if p<py

k g3 n 1
> BB ( > a,) + ) L~ B*a,+1n oa,-)
[=1 i=J +1 i=JF 4 2

lf Bkgﬁgﬁl{*\ Vkela'--a l(n)

i(n) i
Z/L( 3 a,-) it B> p
i

P=J 4
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