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Derrida's generalized random energy model is considered. Almost sure and L p 
convergence of the free energy at any inverse temperature # are proven for an 
arbitrary number n of hierarchical levels. The explicit form of the free energy is 
given in the most general case and the limit n ---, vo is discussed. 
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1. I N T R O D U C T I O N  

R a n d o m  energy models were in t roduced by Derrida/ l!  as simple and 

solvable models for spin glasses. Spin glasses are disordered magnetic  

systems and, as is well known,  a mean  field description of such system is 
given by the Sher r ing ton-Ki rkpa t r i ck  modelJ  4) This model  is defined on a 
one-dimensional  lattice for Ising spin a = _+1 by the Hami l ton i an  

H(~) = - ~ Jija,a+ 
(i,j) 

where the Ju are independent  Gauss ian  r andom variables with zero mean  
and variance 1/x/-N. The quant i ty  H(~),  the energy associated with a given 

configurat ion ~, is a Gauss ian  r a n d o m  variable with 

E(H) = 0, E( [ H ( ~ ) ]  2) = N, E(H(~) H ( ~ ' ) ) =  aia; 
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No rigorous results exist for this model, but the random energy model can 
be rigorously solved./5/ 

The GREM (2) is the most recent model and it describe a system with 
2 N possible configurations where the Hamiltonian is not specified, but the 
energy associated with each configuration is the sum of Gaussian random 
variables and the correlations between different configurations are 
described by a covariance function that depends on n -  1 parameters. 

With a suitable choice of the above-mentioned parameters, it is 
possible to reproduce, in the limit n ~ o% many features that are typical of 
"Hamiltonian" spin-glass models/3'4) In Ref. 2 a method for evaluating the 
infinite-volume limit of the average free energy for arbitrary n is described 
and some examples of explicit solutions are exhibited. 

In this paper we show that the sequence of random variables 

l 1 ~'~ 
FN(fi)=~lnZN=~ln ~ expfie~ 

v ~ l  

converges almost surely to its average value F(fl) and in all [l_ p, 1 ~< p < oo, 
and we give the explicit form of F(fl) in the most general case. We prove 
also that it is sufficient to have n/N= o[(ln N) ~ +"] to get the same results 
when the joint limit N ~ oo and n ~ oo is considered. 

In Section 2 we define the model and state our theorem. The proofs 
are given in Section 3. 

The strategy is similar to that used in Ref. 5 for n = 1. In that case the 
main ingredient of the proof was that for large N the maximum of the 
sequence of independant Gaussian random variables E l / N  , .... E2,,/N is 
almost surely bounded. In our case each energy is the sum of n independent 
Gaussian random variables and we show that there exists a compact, con- 
vex region Q in ~" where typically the 2 N points associated with the 
sequence E1 ..... E2u lie (cf. Proposition 3.1 ). 

We also prove a strong law of large numbers for the occupation num- 
ber of the neighborhood of an arbitrary point in Q (cf. Proposition 3.4). By 
the use of suitable lower and upper bounds we show that almost surely 

�9 1 u ]imoo FN(fl)= F(fl)= j im -~lnE~z(ZuZe) ] 

where r; is the average with respect to the Gaussian random variables and 
X~ is the characteristic function of the set E~.~Q, Vve{1 ..... 2N}. The 
asymptotic behavior of F(ZNT~) is obtained by very simple geometrical 
considerations. The [k p convergence follows from the mean convergence 
theorem by proving the uniform integrability of the random variables 
IFN(fl)I". 
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2. D E F I N I T I O N S  A N D  R E S U L T S  

For any n ~ N  and any N ~ N  let a~>0 and cq~>l, i=l,...,n, be real, 
positive numbers such that 

• a~=l, ~ l n e ~ = l n 2  
i - - 1  i 1 

and let (f2, X, P) be a probability space such that for any n E N and N e  N 
. . . .  N independent, nor- there exists a family of c~N+~Nc~V+ +~,z . .  % 

malized, Gaussian random variables 

~ k ~ . U ( 0 , 1 ) ,  j = l  ..... n, k j= l , . . . , a  u ],..., ) 

defined on ((2, Z, P). 
The GREM at inverse temperature fl is then defined by the family of 

random variables 

Zn, N(fl) = ~ " ' ' 2  expfi NI/2 a)/2e~,...,k, (2.1) 
k l  = 1 k n  = 1 j 1 

Define also, for any k e  { 1,..., n}, the following subset of Nk: 

i = 1  i = 1  

and I[xH2= ~'i'= 1 ~  is the Euclidean norm of ~". Our main result is: 

Theorem 2.1. Let m* be the n-dimensional vector, r n * -  
(m*" - tt~al/2~n and let rn be the point of the compact, convex subset ) i ~ 1  - - t l - "  i l i = l '  

~(n) of N" at minimal distance from m*. Then for any fl > O 

1 [jm*lJ 2 Jim =m*H 2 
F~= lira ~lnZn,  N(fl)- t - ln2 (2.3) 

N ~  2 2 

almost surely and in LP(s Z, P) for any 1 ~ p < oo. If we consider the joint 
limit N--. oo and n--* oo, the same result holds if n ~< const x N/(ln N) 1+~' 
with r/' > 0. 

3. P R O O F  OF T H E O R E M  2.1 

The proof of Theorem 2.1 follows from Propositions 3.3 and 3.5 and 
inequalities (3.6) and (3.7). We study first the almost sure convergence. 

Let us first consider the case where n is fixed. We start with an upper 
bound for the free energy. 
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let 

and 

Given a family 8 = ( i l l  . . . . .  (~n) of strictly positive numbers and j e  1 ..... n, 

J 

Qj=  ~ l n a s+ as  
i = 1  

i = l  

Let us define )~(Qj, N) = {AIZX) as the characteristic function of the set 
A(j, N). 

Proposition :3.1. For any 8 = ( $ 1 , . . . , 6 ~ ) ~ " ,  6~>0, V i = l  ..... n, 
there exists Ql c~2 such that 0z(f21)= 1 and for any co ~ ~21, 3N~(co, 8) such 
that, for any N>~N~(co, c~), 

f i  ~((Qj, N)= ! 
j = l  

Proof. Since 

and 

�9 ~ ~ A c P x(QjN) 0 P (j, n) <~ P(AC(j, n)) 
j j 1 j =  1 

P ( A ' ( j , n ) ) = P ( M a x  ~ re i ~2 t V <..k,J >12QjN 
\ k l , - , k j  i= I 

~e-;'ajN~u'' '~r --)L) -s/2, V 0 < ) o <  1 

where we have used the exponential Chebyshev inequality and the fact that 

E ( e x p -  Max ._. ~< ~ c~fO: (S~l , . . . ,k j )  2 " ' "  exp 5 i~  (d)~ 
\ 2 k l , . . . jc i i= 1 1 

=  7)(1 - ; 0  

Choosing )~ = 1 - r / ,  with 

~ j  
r/< min 

~ ' i = l  x<s< ,2(6 j+  J 21n~i) 

we get 

P(AC(j, N)) ~< (~/)-J/2 exp( -6 jN/2) ,  Vj+ 1 ..... n 
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Therefore 

~, L [P(AC(J, N))< +co 
N~>I  j = l  

and the result follows from the Borel Cantelli lemma. 

P r o p o s i t i o n  3.2. The exists Q2 r163 such that P(f22)= 1 and for 
any co e s and any 7 > 0, 3N2(co, 7) such that if N >  N2(co, 7), then 

gn,u( f l )~  [ e x p ( T N ) ]  ~ e..~<~2Q,N 

g z+...e2~2Q.N 

d ~ l  ' " " d ~ n  

x exp Nln  ~ i -  + / /  (Nai)l/2ai (3.1) 
i I i = 1  

Proof. By the Markov inequality 

P z(Qj, N) Zn,N(fl) >~ eTXE z(Q2, N) Z,,,x(fl ) ~< e--~'N 
i 

The result follows from Proposition 3.1 and the Borel-Cantelli lemma. 
Let us define 

i = 1  

k =  1,..., n 

P r o p o s i t i o n  3.3. Let m*(/~) be as in Theorem 2.1 and let m(6) be 
the point of the compact, convex subset ~(k, 6) of N" at minimal distance 
from m*. Then for any t /> 0 and for any co belonging to s the following 
inequality holds: 

In Zn,u(~) ~ N[F,,(fi) + rl + 7] 

--= N[�89 IIm* It = - �89 - m * l l  z + log t /+ ~1 + 7] 

if 6=Y,7=16 i is small enough and N>~N2(co), where 7 is defined in 
Proposition 3.2. 

Proof. Let us first remark that, since ~(n, 6) is convex, then, if 
e n g(n, 6), 

L L L 
i = 1  i = 1  i = 1  

822/46/3-4-5 



498 Capocaccia,  Cassandro, and Picco 

Since (3.1) also can be written as 

(')+ 
Z.,u(fl) ~2N[exp(TN)]  ~ f)@(,,.a, 

" 1 Nm*23 
• ,} t+,- +--C-J < 

then from inequality (3.2) one gets 

1 
Z,,N(fl)<<.2U exp(TN)exp  - s ~ [x/-Nm~(6)- ~m*]2 + N s m*2 

i = l  i = I  2 

and the result follows from the continuity properties of m~(6) as a function 
of ~ together with Proposition 3.2. 

To prove a lower bound for the free energy, we start with the follow- 
ing result: 

Proposition 3.4. 
for any j = 1,..., n 

Let A =(A~ ..... A,) be a subset of N~ such that 

J 

IF] ~x,.s E(I ,~,(d)) >~ 4(N)  
i=1 

where ~(N) are such that ZN~>~ Z~'= l [~ (N)]  ~< oO, then for any given 
0 < t / <  1 there exist Q 3 c f 2  with P((23) = 1 and for any C0E~3,  3N3(~o, r/) 
such that VN> N3(co , r/) 

k I = 1 k2 = 1 kn = 1 i = 1 

Proof. Let us remark that 

\ k l  kn i =  1 

k l  kn k l  kn 

i = 1  
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and 

D2=~_ / ~a . . .~*a,-- IF ~ ' " E { ~ .  
k .  k .  

n 1 

= Z Z Z Z n:(~,)...n:(~,) 
j=l k l ' " k j  k j + l # l j + l  k j - ~ 2 " ' k n  

lj + 2 " " " In 

x E1 - E ( ~ , ) . . .  ~ ( ~ , ) ] [ ~ ( ~ , + , ) . . -  ~ ( ~ . ) ]  2 

~< c~NIE(1]A,) E ~#+~E({J,~,)"'~NE(1]~.) 
Li=l j=l 

where we have used the independence of the e's. 
It follows from the Chebyshev inequality that the left-hand side of 

(3.3) does not exceed 

1 " 1 1 " 

j~l I~iJl o~N~(~A,) ~'~j----~l [ ~ ( N ) ] - ~  

and the result follows from the Borel-Cantelli lemma. 

P r o p o s i t i o n  3.5. Vp > 0, Vl > t />  0 there exists 124 c 12 such that 
P(Q4) = 1 and V~o ~ 4 ,  3N4(c0, r/) such that for any N>/N4(co , rl) 

Z.,N(fl) >~ (1 - r/) exp NE F(fl) - p ] (3.4) 

Proof. Let us remark first that VA = (As ..... A,) c Nn 

N N C(I n 
A l~k l  ) E "1] Zln(~[ kn) 

k I = 1 k n =  1 

x exp flx/-N Inf L , ~ i  ei 
g i E A i  i=1 

u = i - - n  

(3.5) 

Then choose 

A(p)= {~E N'l,,/N[mi-2p,] < 8i < x /NErn, -p , ] ,  Vi= 1 - n }  

where (miY/= ~ = m is defined in Theorem 2.1 and the {Pi}7= 1 are such that 
A(p) c ~(n). Since 

exp - �89  2pi) 2 
E(~ ~,(g)) > 
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we get 

izi c~E(~ ~,).< / / 1 );exp521_12N(p,m,-p~ ) 
, = 1  " ~  \2(2~N)l/2J H i (  m, - P,) 

i.e., the hypotheses of Proposition 3.4 are satisfied. Then, using Eq. (3.5) 
and proposition (3.4), we get 

Zn.N(3)>~(1--~I)expN In cq--~ (m,-- 2p,)2 +/~ a~/2(m,--2p,) 
i 1 / = [  

: ( 1 - ~ / ) e x p N [ F n ( f l ) - / ~ 2  k a~/2Pi +2 ~ p2+2 ~ pjn,] 
i = 1  / = 1  , = 1  

from which we get the result. 

Remark. To study the joint limit N--* oo and n-* 0% we have to 
show that in this limit all the previous probability estimates hold and that 
error estimates on the free energy can still be made as small as we please. 

The error on the upper bound for the free energy is proportional to 

527= 1 ~i. 
The error on the lower bound for the free energy is 

i = 1  i = 1  i = 1  

In order to prove the analogue of Proposition 3.1, it is sufficient to show 
that 

~ (tl) Jexp(-6jN/4)<oo (3.6) 
N~>I i = l  

To satisfy the hypotheses of Proposition 3.4, it is sufficient that 

[mi(3)-p,1 exp - 
N~>I j = l  i 

2N(p~m, P~)I 
i = 1  

(3.7) 

It is easy to check that if we choose 

101 ~ p ~  

6 
6j j(ln, j ) l+ , ,  forsome q ' > 0  

Pi = P/,/N for i = 2,..., n, q = 6,](4 in 2) 
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and we assume n ~<const x N/(ln N) 1+"'' for some t/" >0 ,  then the above- 
ment ioned errors on the free energy can be made as small as we please for 
p and 6 suitable and the two sums (3.6) and (3.7) are convergent.  

3.1. Convergence in [Lv(s ~', P), Vpe [loo[ 

In order  to prove 1_ p convergence, we use the mean convergence 
criterion/6): if the random variables {[YN] P, N~> 1 } are uniformly integrable 
(u.i.), that  is, 

sup ( l yNI p dP = 0  Jim 
N >~ No J] YN] p ~ cL 

and YN --+ Y in probabili ty,  then uN --+ y in 1_ p. 
Since 

FN(fl) <~fiN 1/2 Max a!/2eJ k + I n  2 
kl  ,...,kn j 1 J 1 ..... j 

F N ( f l )  ~ f i N  -1 /2  M a x  ,,1/2~j 
hi '""kn j 1 "~j ~kl'""kJ 

if ~ > 1 we get, calling 

that 

{ = M a x  a)/2e~, ~ 
kl'""kn 1 .... ' J J  

f IFN(fl)l p dP  
F N I n >  ~ 

+ln2) 
fl 

l x ~ ( ~ l / p  i n 2 ! )  ~ < _  [ ( I + I ) ~ / P + l n 2 ] P P  ~> 
l = 1  f l  

+ ( l +  1)PczP ~ <  
l = 1  
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since { is the m a x i m u m  o v e r  2 N r a n d o m  variables, we have that  

12N l/p 
~< 2N exp - }-fl-5 (c~ - l n 2 )  2 

if c ~ / P - l n 2 >  1, where the last inequality follows from the fact that  
2;=1 4 / 2 d  ~ A/'( O, 1). 

Fur thermore ,  it is not  difficult to convince oneself that  

P 4 <  ~ < 2 N P  

Nl2ot2/p 

2 N exp 2fl 2 

Thus, when O~ 1/'p > In 2 + 2fl(ln 2) 1/2, we get 

sup ~ IFNIPdP<~ [ ( i + l ) a l / P + l n 2 ]  p 
N>~ l ~[FN[ p>~: l= 1 

12(~1/p _ In 2) ~ 12(c~ z/p) 
x e x p -  4fi 2 }- t=/', ( l +  I)P ~ exp 4fi 2 

which goes to zero when ~ goes to infinity. 

3.2. Explicit Evaluation of the Free Energy 

At the end of this section we will give the explicit formula  for the free 
c~ " and ( a ) "  w i t h Z T =  l n c ~ i = l n 2  energy for arbi t rary  sequences (ln i)i= l , ,,i=1 1 . 

and ZT= 1 ai = l. T h e  p rob lem is just  to explicitly evaluate the coordinates  
of the point  m in Theorem 2.1. 

Let us first define, if j and k are two integers smaller than n, with j ~< k, 

k //i Bj,k = 2 ~ in ~, ai, Bj, k > 0 
i = j  

Let us also define the following integers: J~  = 1, 

J *  = In f{ J  > 1 I B2,j < B3+ 1,1, Vl > J + 1 } 

J *  I n f { J >  * 2 = J k  IIB2jz , j < B j + I , I ,  V I ~ > J + I }  
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and let/3k > 0 be such that  

F r o m  the very definition of aT* it follows that  fik is an increasing sequence 
of real numbers .  For  fik ~< fl ~< flk + l ,  we will prove  that  the point  rh in ~ 
with coordinates  

l~li~-flla~/2 if i t  [ J * l  + 1 ..... J f ] ,  I t  1 ..... k 

r k i = f l x / - ~  if i s [ J *  + l , . . . ,n]  

is the point  m of the compac t  subset ~(rn) at minimal  distance f rom 
m* = (fla]/2)'/= l. 

Starting f rom the vectorial  identity in N" 

(8  - m * )  2 - ( g  - r n )  2 - -  (rrt - m * )  2 = - 2 ( a  - m ) -  ( m *  - rh) 

if we can prove  that  for any e E ~(n)  

S ( s )  = (s -- r~). (m* - rk) ~< 0 

then rk = m if fl s [ilk, fik + 1 ]. 
Since rh i = m*,  f i />  J~' § l, 

Jk 
~ ( 8 ) =  E (si--i~li)(m*--ffvli) 

i = l  

= - 1  
l =  1 i = J/*- l 

Let us remark  that  if 

aso~(Jff)  = ("] S ( j )  
j = l  

where 

(~-  r~,)m~ 

then 

S ( j ) =  e ~ c2 ~< ~ in ~i 
i = 1  i ~ 1  

ee (~ c/g/e)-  (e,-r~,)r~;~<O 
j = l  i ~ l  
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since gs(e) = 0 is the equation of the tangent hyperplane at ~ to S(j). Using 

J? 

with 

we get 

where we have used ill< ill+ 

1 G(/3) = ~ IIm*l12-~ 

gjg= 0 

l - -I  

= - g j 2 +  ~ (gJT-gJ~ j) 
l = l  

a n d  gj (e )  ~ 0 ,  V d e  l ..... Y~ if e e~(J*).  T h u s  

m - m * H Z + l n 2  

+ l n 2  if fl~</~t 

fltfl a i + flaaj + In cq 
/=1 \ i ; J ~ l +  1 i--J~+l 

if /~<~/?<~/~k+t Vk~l, . . . , l(n) 

( if, ag) if fl~>fl,(n) 
\ i ~ J ~  1 a, 1 
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